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SUMMARY

The Universal Transverse Mercator (UTM) projection is the basic projection used for mapping
and survey coordination in Australia. Due to restrictions imposed by zone width, UTM
coordinates may not be suitable for simple manipulations in Geographic Information System
(GIS) databases covering regions having large east-west extent. This problem can be
overcome by using coordinates derived from appropriate minimum-error map projections
covering the region in one complete zone. Such projections minimise the usual areal, angular
and linear distortions associated with any projection of the Earth.

RESUME

La projection Universal Transverse Mercator (UTM) est la projection de base utiliseé eu
cartographie et pour le levé de plans en Australie. A cause des restrictions dues 4 la largeur de
la zone, 1a manipulation simple des coordonnés UTM peut s'avérer mal adaptée aux indications
typographiques GIS de régions ayant une grande superficie de l'est & l'ouest, le probléme peut
étre surmonté en employant des donne€s provenant de la projection approprieé de cartes
Minimum Error englobant I'Australie en une seule zone. Je telles projections réduisent au
minimum les distorsions territoriales, angulaires et linéaires qui sont associées a toutes
projections de la Terre.
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ZUSAMMENFASSUNG

Die universale Merkator Querprojektion (UTM) is die fundamentale Projektion beniitzt fiir
Kartierung und Vermessungskoordination in Australien. Wegen Beschrankungen von der
Zonenbreite, UTM Koordinaten sind nicht immer geeignet fiir einfache Manipulation in G.I.S.
Datengrundlagen in Gebieten mit grossen Ost-West Umfang. Dieses Problem kann G
berkommen werden mit der Bentizung von Koordinaten abgeleitet von Minimalfehler Karten
Projektionen, die Australien in einer Zone decken. Solche Projektionen verringern die Fehler
der gebrauchliche Flichen, Winkel und Linearverzerrungen verbunden mit jeder Projektion auf
der Erdoberfliche.

1. INTRODUCTION

In Australia, all mapping and survey coordination is based on a Transverse Mercator projection
of latitudes and longitudes on the Australian Geodetic Datum and for national and state
mapping purposes, the Australian Map Grid (AMG) has been defined to correspond with the
Universal Transverse Mercator Grid. Each AMG zone is 6° wide with a central scale factor of
0.9996 and a coordinate origin 10,000,000 metres south and 500,000 metres west of the
intersection of the equator and the central meridian of the zone. Australia is covered by eight
such zones and with the exception of the Australian Capital Territory, no State or Territory is
completely covered by a single AMG zone. In addition to the AMG, the state of New South
Wales has adopted (for the purposes of survey coordination) the Integrated Survey Grid (ISG)
with 2° zones, a central scale factor of 0.99994 and a coordinate origin 5,000,000 metres south
and 300,000 metres west of the intersection of the equator and the central meridian of the
zone. Each AMG zone contains three ISG zones, the second of which shares the same central
meridian as the AMG zone, and seven ISG zones cover New South Wales. The AMG and the
ISG have been used by all States and Territories of the Commonwealth of Australia for the
exchange of coordinated mapping data and as a consequence; Federal, State and Local
government organisations, government business enterprises, and private business companies
have extensive data bases linked to AMG and ISG coordinates.

Geographic Information Systems (GIS) offer sophisticated data analysis techniques and are
increasingly used by Local, State and Federal authorities, as well as private organisations, to
assist in management and planning. If a GIS is used to analyse and display data in a region
covered by a single AMG zone then the data can be linked to AMG coordinates for that zone,
but if the region under analysis lays within two or more zones, data will have to be coordinated
in a different system since AMG and ISG coordinates are related to a map projection which is
unsuitable for display and analysis of large areas as a single entity. Some GIS offer a selection
of map projections and coordinate transformation routines for this purpose.
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Choosing a suitable map projection for a particular GIS application requires a knowledge of
the inherent errors in projecting the curved surface of the Earth (sphere or ellipsoid) onto a
plane, where such errors manifest themselves as areal, angular and length distortions. These
common distortion measures, together with the developable surfaces upon which the Earth is
projected, have been used to classify maps into groups with desirable properties such as equal-
area, conformal and equidistant projections of the cylindrical, conical and azimuthal classes.
Other projections, not fitting into these general classes, could be classified as
pseudocylindrical, pseudoazimuthal, pseudoconical or conventional and often possess some
desirable distortion characteristic or pleasing general appearance. Another group of map
projections can be classified as minimum-error. Minimum-error projections are determined by
selecting mathematical functions of projection parameters which measure the "error" in a map
projection and those parameters varied to produce a map for which the selected error function
is a minimum. Minimum-error projections can also be derived to have additional properties
such as equal-area, conformal or equidistant.

This paper shows the development of a minimum-error equal-area map projection for the
State of Victoria which is a significant improvement over two commonly used projections of
the State. The technique used in this paper was proposed by Peters (1984) in his development
of distance related world maps and also used by Canters (1989 and 1991).

2.  MINIMUM-ERROR MAP PROJECTIONS

Sir George Airy (1861) proposed a method of determining projection parameters such that the
sum of the squares of the scale errors, in the principal directions, summed for every point on
the map is a minimum. Airy called his method "Balance of Errors" and applied it to an
azimuthal projection. Col. Sir Henry James and Capt. A.R. Clarke (1862) corrected an error in
Airy's calculations and applied the method to a general perspective projection of the Earth and
A.E. Young (1920), extended the method to the general conical projection and demonstrated
how the technique could be used to obtain the minimum-error projection of a particular class
of projections. The minimum-error function, proposed by Airy and used by Young can be
derived in the following manner:

Tissot showed that an infinitesimal unit circle on the Earth will be projected as an ellipse
on the map projection and that the lengths of the semi-axes of this /ndicatrix are the
scales in the principal directions of the map projection. If @ and b are the lengths of the
semi-axes of Tissot's Indicatrix, then (1 — a) and (1 — 4) are scale errors, and since a and
b are functions of the latitude (¢) and longitude (A), the sum of the squares of the scale
errors at a point is given by the function

F@M=[(-a) +(1-)’] (1)

Summing the scale errors over the surface of the sphere represented on the map, leads to
the integral
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[[r@.0)da

where da= R*cospdddh is the elemental area on the sphere of radius R. For R equal
to unity Airy's minimum-error function can be expressed as

}‘*2 ¢2
M:J’ j[(l—a)2+(1—b)2]cos¢d¢dx @)

Aoy

Equations for minimum-error projections may be determined by expressing a and b as
functions of the projection parameters and solving for those parameters by minimising M.
Young (1920, pp.33-35) shows a method for obtaining minimum-error Mercator (conformal)
and minimum-error Plate-Carree (equidistant) projections.

A method of determining minimum-error functions for conformal projections, uses a theorem
developed by Gauss who showed that the necessary and sufficient condition for a conformal

transformation from the spheroid (or sphere) to the plane is given by the complex expression
(Lauf, 1983)

y+ix = f(y+il) 3)
where the function f(y +iA) is analytic and contains the isomefric parameters y (isometric

latitude) and A (longitude), and i> = —1. A necessary condition for an analytic function is that
the Cauchy-Riemann equations are satisfied, ie.

@ _o% and ——=-— 4

on  on o o

Using this theorem, any conformal projection (x,y) (isometric parameters), can be transformed
into another conformal projection (£,N) (also isometric parameters) by the complex expression

N+iE = f(y+ix) (5)

A function, f(y+ix) which satisfies the Cauchy-Riemann equations is the complex polynomial
N +ilf =" (A, +iB,)(y +ix)” (6)
p=1

If k is the scale factor on the initial conformal projection (x,y), Snyder (1984, p.34) shows that
the scale factor K on the transformed conformal map (£,N) is

K= Z P(A, +iB,)(y+ix)" |k 7)

p=1
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If (K —1) is the scale error, a function £ can be formed which is the sum of the squares of the
scale errors for m points on the transformed map

E=Y (K, -1’ = minimum (8)
r=1

Since E is a function of the unknown coefficients 4 and B for the m points, the least-squares
technique can be used to determine the coefficients such that £ is a minimum for the selected
points. This technique has been used by Snyder (1984) to produce a low-error conformal map
of the United States and also by Reilly (1973) who developed a minimum-error conformal
projection for New Zealand. A feature of these minimum-error conformal projections is the
ability to determine the coefficients from points so selected as to produce lines of constant
scale factor, or isocols, which follow the shapes of countries or regions of interest.

Another method of deriving minimum-error projections (the one used in this paper) is based on
a comparative distance function which measures the "error" in a distance between two points
computed from map coordinates as compared to the distance on the Earth (sphere or spheroid)
between the corresponding points. This function, proposed by Peters (1984) and used by
Canters (1989 and 1991), is the linear distortion D, where

ISik “Sikl
ik ‘Sik + Sik | ( )
and
s, = cos™ {sin ¢, sinp, + cos, cosd, cos(h, — Y (10)

is the distance between two points P, and F, on the spherical Earth, and

H

Sik :{(xk_xi)2+(yk_yi)2}% (11)

is the distance between the two corresponding points on the map projection.

Canters (1989) shows that the linear distortion D can be converted to a corresponding scale
factor K as follows

I-K]_ (12)
1+K]|

which leads to a quadratic equation in K which can be solved for two reciprocal solutions

1+ D) (13)

with 0<K,<1<K|
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If distances S and s are computed between n pairs of points, the mean linear distortion is

5-2D (14)

Canters (1989) expresses the rectangular projection coordinates (x,y) as polynomial functions
of the geographical coordinates (¢,A) in the form

M'u

ic,kq) A (15)

i
(=]

i

>

i=0

Mu

y Clud' (16)

kol
I

0

which gives the mean linear distortion for a given set of points as a function of the polynomial

coefficients, D = f(C,C"). This function can be minimised by a suitable choice of polynomial
coefficients C and C".

The three techniques outlined above, that are employed to form minimum-error functions
(which can then be used to compute parameters of minimum-error map projections) are only a
selection of the methods used and documented in cartographic literature. An excellent
treatment of minimum-error map projections can be found in Snyder (1985), who details other
methods and variations, and Dyer and Snyder (1989) develop a minimum-error equal-area map
projection of Alaska along similar lines to the one presented here.

3. EQUAL-AREA MINIMUM ERROR PROJECTIONS

For various reasons, it may be desirable to produce a minimum-error projection with a
particular distortion characteristic such as equal-area, conformal or equidistant. For a
minimum-error equal-area projection, the minimum-error function must satisfy an "equal-area
condition" and such a condition can be determined by considering the differential relationships
known as the Gaussian Fundamental Quantities, e, f and g and the related quantity j as
follows:

For a transformation from the sphere or spheroid (¢,A) to the projection plane (x,y) such
that x = f,(¢,1) and y= £,(¢,A), Lauf (1983), gives e, f; g and j for the plane as

B @ 2 —@)‘ 2
e—(a(b) +(6¢) (17)

Ox Ox ay &y
/= 8(1) 8?» op OA (18)
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ax 2 a_}/ 2

B ol B A 19
g (mj (mj (19)
. 2 _|Oxdy Oy ox

o Fr_| XY Oy OX 20
JENE = T a o (20)

with an element of area on the projection plane given by

da = jdodr 2n

Using similar differential relationships; if a transformation is made in_the plane between
the (x,y) system and the (X, Y) system such that X = f,(x,y) and ¥ = f,(x,y), where an
element of area in the (x,y) plane is da = dx dy; then the corresponding element of area

in the (X,¥) plane is dA = jdxdy where j=|0X/ox 0Y/dy—0X/dy oY/ ox|.

For an equal-area transformation then d4 must equal da, which leads to the equal-area
condition in the plane

axor_orox o

There are many equal-area transformations in the plane which satisfy equation (22). One such
set of transformations may be derived by as follows:

let X = f(x), ie, Xis a function of x only, then %ég: f'(x) and % =0.

Equation (22) becomes f '(x)%yz =1 and solving for ¥ by integration gives

_jf(m”fxm

Similar reasoning can be used to derive an expression for X when Y = g(y). These equal-area
transformations in the plane can be summarised as

X=f(x), Y=—2 (23)

X= , Y=g() (24)
y
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Now, consider an equal-area projection of the sphere (¢,A) to the plane (x,y), such as Alber's
equal-area conic, where x and y are the "base projection coordinates" and

x=f(¢,) and y=f,($,4)

Using a 4th order polynomial and equations (23), an equal area transformation in the plane
from (x,y) to (X, ) is given by

X=f(x)=A4x+Ax"+Ax + 4,x" (25)
1 3 4

-y y
T (%) A +24,x+34,x7 +44,x°

(26)

This projection is symmetric about the X-axis and preserves the scaling of the parallels along
the central meridian. = A second transformation in the plane between (X ¥) and (X',Y") using
another 4th order polynomial and equation (24) is given by

Y'=BY+B,Y +BY’+BJY* 27)

X X
~ f'(Y") B +2BY+3BY?+4BY?

X’ (28)

This second projection in the plane is symmetric about the Y*-axis.

Using coordinates from equations (27) and (28) for » "control points" in a region, the mean

linear distortion D is a function of the polynomial coefficients 4, and B,. By using a function
optimisation technique known as the downhill simplex method (Nelder and Mead, 1965)
coefficients can be determined such that the function D is minimised.

4.  RESULTS FOR VICTORIA

To develop a Minimum-error equal-area projection of Victoria, the base projection was
chosen as Alber’s equal-area projection of the sphere (Snyder, 1987, pp.98-103) with standard

parallels ¢, = —38° and ¢, =-36°. The radius of the sphere was taken as the mean radius of

curvature for the Australian National Spheroid at latitude ¢ =-37° giving R, = 6372225m

(nearest metre). Forty-one control points were chosen across Victoria at one-degree intervals
of latitude and longitude and also where meridians crossed state borders. These n =41 points

give rise to n(n—1)/2 =820 possible distances.
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The mean linear distortion for Alber’s projection over the 820 distances was
D pins = 0.000037487  with scale factors: K, =1.000075 and K, =0.999925
Using equations (25) to (28) the function D was evaluated for the Minimum-error equal-area

projection (X,¥") and minimised by solving for the coefficients 4, and B, using the simplex
method of Nelder and Mead given by Press, et al., (1992, pp.408-412) to give

D, mror = 0.000029575 with scale factors: K, =1.000059 and K, =0.999941

1.039832888 1.039709031
—0.000055433 B —0.000102416

v =

~0.019731969 | ~* | 0.059322526
0.187676360 0.178162285

Whilst the mean linear distortion values for Alber’s and the Minimum-error projection are very

small numbers, the percentage change in D =78%. The values for K, and K, represent the
mean scale factors for the 820 distances and signify that, on average, projection distances are

enlarged (or reduced) by 75 parts per million (ppm) for Alber’s projection and 59 ppm for the
Minimum-error equal-area projection.

The maximum and minimum scale factors, (a and b respectively) for a map projection are the
semi-axes of Tissot's Indicatrix. a and b can be computed from the Gaussian fundamental
quantities e, f and g in the following manner given by Lauf (1983, p.74)

a2 — (e +g +W) a.nd bZ - (e +g —W) (29)
2 2
where
v Caup S v Saup
e'=—ME = fro 2 M apd g'=-2E (30)
€ spuErE S sprre 8 sprERE

and

w2:(eo_g|)2+4f12 (31)

e, fand g for the sphere are R®, R’cos¢ and R’cos’¢ respectively and e, f and g for the
map projection are calculated from differential relationships similar to equations (17), (18) and
(19) where partial derivatives are calculated numerically by computing the small changes in

projection coordinates (dX",dY”) caused by small changes in ¢ and A (dd = dA = 0.001°).
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For Alber's and the Minimum-error equal-area projection, a and b were computed at 0.1°
intervals of ¢ and A covering Victoria and isocols, or "contours" of equal maximum scale
factor, interpolated. Figures 1 and 2 show isocols (in intervals of 100 ppm) on Alber's
projection and the Minimum-error equal-area projection respectively and hatching indicates
regions where the maximum scale factor is less than 100 ppm. In Fig.1, the regions cover
approximately 38% of the State, whilst in Fig.2, the hatched region is approximately 58% of
the State.

These results indicate that the Minimum-error equal-area projection developed above, is a
significant improvement over 4lber’s projection in the following ways:

(i) the percentage of the State's area bounded by a maximum scale error of 100 ppm is
increased and combined in one region, and

(i) on average, plane distances computed from projection coordinates will be "closer”
to the corresponding true distance on the Earth.

In this study, several other equal-area polynomial transformations were investigated. Using
Alber's projection as the base coordinates, 6th and 8th order polynomial transformations
showed no significant improvement in the mean linear distortion D, or in the pattern of
isocols, over the 4th order polynomial transformation given above. Using a Cylindrical equal-
area projection as base coordinates, a 4th order polynomial transformation gave a value of D
significantly worse than that for Alber's projection and an undesirable pattern of isocols. This
indicated that the choice of base projection coordinates was an important factor in developing
the best minimum-error equal-area projection for a region.

5. CONCLUSION

This paper shows that simple polynomial transformations of Alber's projection coordinates can
lead to a minimum-error equal-area projection with improved scale characteristics. Both
Alber's and the Minimum-error projection are capable of mapping the State of Victoria in a
complete zone and have decided advantages over the UTM projection with 6° zones (the base
projection for the AMG) and other Transverse Mercator projections of the State. As a
comparison, Figure 3 shows a Transverse Mercator projection of Victoria with a zone width of
12°. Lines of scale factor (ppm), indicate that distances computed on this projection would be
badly distorted in many areas of the State.

The study also revealed that the selection of the base projection coordinates is an important
factor in determining the "best" minimum-error projection for a region. It may be possible to
derive a better projection if the standard parallels of Alber's projection were modified or if
another projection (eg. azimuthal equal-area) was chosen as the base projection.
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Figure 1. Alber’s equal-area projection
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Figure 2. Minimume-error equal-area projection
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Figure 3. Transverse Mercator projection
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